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1 Introduction

Suppose the price evolution of a stock follows a geometric Brownian motion model, whose
drift will change, at an unknown future time to an unknown level. An investor, who purchases
a certain small number of shares at an initial time, can only observe the prices afterwards.
Based on the observed prices and some reasonable a priori knowledge about the change in
the drift, what is the best time to sell the shares, in order to maximize the profit on average?
Under the same circumstance, what about the optimal discretely balanced buying-selling
trading strategies with a larger number of shares?

At a more abstract level, this is the optimal stopping problem and the impulse control
problem of a diffusion, whose drift term has an unobservable parameter with a change point.
There have been routinely two common approaches to such problems. The conservative ap-
proach is the mini-max philosophy that optimizes in the worst case scenarios, formulated as
a zero-sum game between a controller and a stopper by [10] Karatzas and Zamfirescu (2008).
The approach employed by most, if not all, practitioners is to divide model calibration and
decision making into two separate steps. Bayes sequential detection of change points and
optimal stopping of diffusions are both very well developed fields with an extensive literature
from the past decades. Among them, interested readers are referred to [16] Shiryaev (1969)
and [7] Karatzas (2003) for sequential detection, and to [17] Shiryaev (1978) or Appendix D
in [9] Karatzas and Shreve (1998) for optimal stopping problems.

This paper is an attempt at solving the optimal stopping and the impulse control problems
in the Bayes sequential framework within one step, instead of conducting model calibration
and decision making separately. This is facilitated by a change of measure, which hides the
drift part of the diffusion. Under the new measure, an augmented state process is Marko-
vian, one can therefore derive the variational inequalities satisfied by the value functions.
The current values of the augmented state process provide all the information necessary for
the decision making.

2 Optimal Stopping

2.1 The Model

Consider the canonical probability space (Ω,F,P), which supports a one-dimensional stan-
dard Brownian motion W (·) with respect to its generated filtration F W . In this probability
space, Ω = C[0, T ] is the set of all continuous one-dimensional function on a finite determin-
istic time horizon [0, T ], F = B (C[0, T ]) is the Borel sigma algebra, and P is the Wiener
measure. The state process evolves according to the one-dimensional diffusion

dX(t) = b(t, X(t); θ(t))dt+ σ(t, X(t))dW (t), (2.1)

for 0 ≤ t ≤ T , with the initial value X(0) = x0 ∈ R. The unobservable parameter

θ : [0, T ] × Ω → Θ,

(t, ω) 7→ θ(t, ω) =: θ(t)
(2.2)
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takes values in the parameter space Θ = {µ0, µ1, · · · , µm} ⊂ R. The parameter θ(·) starts
with initial value θ(0) = µ0, and keeps this value until an unobservable time ρ of regime
change. At the time ρ, the parameter θ(·) changes to a new level U , a random variable
whose value can be any one of the numbers µ1, µ2, · · · , µm, and remains at that level until
the fixed finite terminal time T > 0. If the regime change does not occur by time T , then
θ(·) takes the value µ0 throughout the interval [0, T ]. That is to say,

θ(t) =

{

µ0, 0 ≤ t < ρ ∧ T ;

U, ρ ∧ T ≤ t ≤ T.
(2.3)

The change point ρ and the level U are two independent F-measurable random variables, and
the vector (ρ, U) is independent of the Brownian filtration F W . The independent random
variables ρ and U are endowed with the prior distributions

P(ρ > t) = e−λt, t ≥ 0, (2.4)

and
P(U = µj) = pj, j = 1, 2, · · · , m. (2.5)

For any possible values u ∈ Θ, the coefficients b(·, ·; u) : [0, T ]×R → R and σ(·, ·; u) : [0, T ]×
R → R are deterministic measurable functions satisfying the following locally Lipschitz and
boundedness condition.

Assumption 2.1 (1) For every compact subset Kn ⊂ R, there exists a constant Cn > 0,
such that

|b(t, x1; u) − b(t, x2; u)| + |σ(t, x1) − σ(t, x2)| +

∣

∣

∣

∣

b(t, x1; u)

σ(t, x1)
−
b(t, x2; u)

σ(t, x2)

∣

∣

∣

∣

≤Cn|x
1 − x2|,

(2.6)

for all (t, x1), (t, x2) ∈ [0, T ] ×Kn, and for all u ∈ Θ.
(2) There exists a constant C > 0, such that

∣

∣

∣

∣

b(t, x; u)

σ(t, x)

∣

∣

∣

∣

≤ C (2.7)

holds for all (t, x) ∈ [0, T ] × R, and for all u ∈ Θ.
(3) There exists a constant C > 0, such that

|σ(t, x)| ≤ Cx (2.8)

holds for all (t, x) ∈ [0, T ] × R.

Under the local Lipschitz condition and linear growth condition, Assumption 2.1(1)(3), for
b and σ, the stochastic differential equation (2.1) has a pathwise unique, strong solution
X(·), whose generated filtration is denoted as F := {Ft}0≤t≤T . What is observable, in this
context, is the process X(·) only. From the Bayes point of view, the prior distributions in
(2.4), (2.5) for the independent random variables ρ, U , are the a priori knowledge about the
parameter θ(·) before observing the data process X(·).

We provide two commonly seen simple examples to illustrate the model (2.1).
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Example 2.1 (Brownian motion with drift uncertainty)
The diffusion X(·) in (2.1) is a drifted Brownian motion

{

dX(t) =θ(t)dt+ dW (t);

X(0) =0.
(2.9)

The parameter θ(·) is the drift with the initial value µ0. The random variable U has the
prior distribution

U =

{

µ+, with probability p+;

µ−, with probability p− = 1 − p+,
(2.10)

and ρ has an exponential λ prior distribution as in (2.4).

Example 2.2 (Geometric Brownian motion with drift uncertainty)
The diffusion X(·) in (2.1) is a geometric Brownian motion

{

dX(t) =X(t)θ(t)dt+X(t)σdW (t);

X(0) =x0.
(2.11)

In this example, the volatility σ is a deterministic positive number. The parameter θ(·) with
the initial value µ0 is the percentage drift of the Geometric Brownian motion. The random
variables ρ and U have prior distributions (2.4) and (2.5).

2.2 General Theory

This subsection studies an optimal stopping problem of the diffusion specified by (2.1). Since
the parameter θ(·) and Brownian noise W (·) are unobservable, while the diffusion X(·) itself
provides the only observations, we look for a stopping time τ ∗ with respect to the filtration
F , the information generated by X(·), to achieve the supremum

sup
τ∈T

E

[
∫ τ

0

h(X(s))ds+ ξ(X(τ))

]

, (2.12)

where T is the collection of all F -stopping times with values between 0 and T . Similarly,
let Tt be the collection of all F -stopping times with values between t and T . We call

V (t) := sup
τ∈Tt

E

[
∫ τ

t

h(X(s))ds+ ξ(X(τ))

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T (2.13)

the value process of the optimization problem (2.12). The rewards ξ and h : R → R are
deterministic measurable functions satisfying the following conditions.

Assumption 2.1 (continued)
(4) The function ξ(·) is twice continuously differentiable, with first and second order deriva-
tives denoted as ξ′(·) and ξ′′(·).
(5) The functions h(·), ξ(·), ξ′(·) and ξ′′(·) are locally Lipschitz and have polynomial growth.
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From classical results on optimal stopping problems of continuous processes (c.f. Appendix
D in [9] Karatzas and Shreve (1998)), the optimal stopping time for (2.12) has an expression

τ ∗ = inf {0 ≤ t ≤ T |V (t) ≤ ξ(X(t))} . (2.14)

The value process V (·), and thus the expression (2.14), are hard to compute directly in the
P-expectation. Instead, we shall consider the first hitting time τ ∗ under a so-called “refer-
ence probability measure” P0 for the diffusion X(·).

Let
G = {Gt}0≤t≤T = σ {ρ, U,X(s); 0 ≤ s ≤ t}0≤t≤T (2.15)

be the filtration generated by ρ, U and X(·); this is larger than the filtration F . Construct
a probability measure P0, under which the F -adapted process

W 0(t) :=

∫ t

0

σ−1(s,X(s))dX(s), 0 ≤ t ≤ T (2.16)

is a standard Brownian motion. With this standard P0-Brownian motionW 0(·), the pathwise
unique, strong solution X(·) to the SDE (2.1) can be expressed alternatively as

X(t) = x0 +

∫ t

0

σ(s,X(s))dW 0(s), 0 ≤ t ≤ T. (2.17)

Under Assumption 2.1(1)(3), the equation (2.17), as an SDE, has a pathwise unique, strong
solution. The process X(·) is a local (P0,F )-martingale having the instantaneous quadratic
variation σ2(·, X(·)). In the probability space (Ω,G ,P0), the random variables ρ and U are
independent, and the random vector (ρ, U) is independent of the process X(·). We assign
the random variables ρ and U the same P0-prior distributions mandated by (2.4) and (2.5).

The Radon-Nikodym derivative process is the G -adapted process defined as

Z(t) = exp

{
∫ t

0

b(s,X(s); θ(s))

σ2(s,X(s))
dX(s) −

1

2

∫ t

0

b2(s,X(s); θ(s))

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T ; (2.18)

whereas, for every number u ∈ Θ, we introduce the F -adapted likelihood ratio process

L(t; u) = exp

{
∫ t

0

b(s,X(s); u)

σ2(s,X(s))
dX(s) −

1

2

∫ t

0

b2(s,X(s); u)

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T. (2.19)

From the expression (2.3) for θ(·), the Radon-Nikodym derivative Z(·) can be written, in
terms of the likelihood ratio process L(·; u) and the random vector (ρ, U), as

Z(t) = L(ρ;µ0)

(

m
∑

j=1

1{U=µj}
L(t;µj)

L(ρ;µj)

)1{ρ<t} + L(t;µ0)1{ρ≥t}, 0 ≤ t ≤ T. (2.20)

There exists then a probability measure P̃ equivalent to P0, satisfying

dP̃

dP0

∣

∣

∣

∣

∣

Gt

= Z(t), 0 ≤ t ≤ T. (2.21)
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Under the probability measure P̃, the random variables ρ and U are still independent and
retain the prior distributions of (2.4) and (2.5). By a generalization of Girsanov theorem to
local martingales in [15] Van Schuppen and Wong (1974), the process

{

X(t) −

∫ t

0

b(s,X(s); θ(s))ds

}

0≤t≤T

(2.22)

is a local (P̃,G )-martingale, also having the instantaneous quadratic variation σ2(·, X(·)).
The process W̃ (·) defined as

W̃ (t) :=

∫ t

0

σ−1(s,X(s))dX(s)−

∫ t

0

σ−1(s,X(s))b(s,X(s); θ(s))ds, 0 ≤ t ≤ T (2.23)

is a continuous local (P̃,G )-martingale with quadratic variation t, thus a standard P̃-Brownian
motion. The process X(·) satisfies the SDE (2.1) with the P-Brownian motion W (·) replaced
by the P̃-Brownian motion W̃ (·), thus having the same probabilistic properties under the
probability measures P and P̃. This means that the probability measures P and P̃ coincide
on the filtration G .

By the Bayes rule, we may now compute (2.12) under the reference probability measure
P0 as

V (0) = sup
τ∈T

E

[
∫ τ

0

h(X(s))ds+ ξ(X(τ))

]

= sup
τ∈T

Ẽ

[
∫ τ

0

h(X(s))ds+ ξ(X(τ))

]

= sup
τ∈T

E0

[

Z(τ)

(
∫ τ

0

h(X(s))ds+ ξ(X(τ))

)]

= sup
τ∈T

E0

[

E0 [Z(τ) |Fτ ]

(
∫ τ

0

h(X(s))ds+ ξ(X(τ))

)]

.

(2.24)

From the Bayes point of view, E0 [Z(t) |Ft ] is the posterior expectation of the Radon-
Nikodym derivative Z(·) under the reference probability measure P0, given the observations
of X(·) up-to-date. Because of the independence of ρ, U and X(·) under P0, from the prior
P0-distributions which are the same as the prior P-distributions (2.4) and (2.5), and by
(2.20), the posterior expectation has the form

E0 [Z(t) |Ft ]

=

m
∑

j=1

(

pjL(t;µj)

∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds

)

+ e−λtL(t;µ0), 0 ≤ t ≤ T.
(2.25)

For every u ∈ Θ, the likelihood ratio process L(·; u) defined in (2.19) is a local (P0,F )-
martingale, because it satisfies the stochastic integral equation

L(t; u) =

∫ t

0

L(s; u)
b(s,X(s); u)

σ2(s,X(s))
dX(s), 0 ≤ t ≤ T (2.26)
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with respect to the local (P0,F )-martingale X(·). The quadratic variation process of L(·; u)
is

〈L(t; u)〉 =

∫ t

0

L2(s; u)
b2(s,X(s); u)

σ2(s,X(s))
ds, 0 ≤ t ≤ T. (2.27)

On the other hand, from (2.25) we obtain

d (E0 [Z(t) |Ft ])

=

m
∑

j=1

pj

(
∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds

)

dL(t;µj) + e−λtdL(t;µ0), 0 ≤ t ≤ T,
(2.28)

so the posterior expectation {E0 [Z(t) |Ft ]}0≤t≤T is again a local (P0,F )-martingale.

Lemma 2.1 For any nonnegative integers n1, n2 and n3, we have

sup
τ∈T

E0

[

Ln1(τ ;µj)R
n2(τ ;µj) sup

0≤t≤T
|X(t)|n3

]

<∞; (2.29)

furthermore, the family
{

Ln1(τ ;µj)R
n2(τ ;µj) sup

0≤t≤T
|X(t)|n3

}

τ∈T

(2.30)

is uniformly integrable with respect to the probability measure P0.

Proof. The proof is purely technical, and is carried out in the Appendix. �

Lemma 2.2 For 0 ≤ t ≤ T , x ∈ R, l = (l0, l1, · · · , lm) ∈ R
m+1, and r = (r1, · · · , rm) ∈ R

m,
consider the function

α(t, x, l, r) =

(

m
∑

j=1

pjljrj + e−λtl0

)

(

h(x) +
1

2
ξ′′(x)σ2(t, x)

)

+

(

m
∑

j=1

pjljrjb(t, x;µj) + e−λtl0b(t, x;µ0)

)

ξ′(x).

(2.31)

Then, for 0 ≤ t ≤ T , we have

E0 [Z(t) |Ft ]

(
∫ t

0

h(X(s))ds+ ξ(X(t))

)

= M0(t) +

∫ t

0

α (s,X(s), L(s), R(s))ds, (2.32)

where M0(·) is some square integrable (P0,F )-martingale with M0(0) = ξ(X(0)),

R(t;µj) :=

∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds, j = 1, · · · , m, (2.33)

R(t) := (R(t;µ1) · · · , R(t;µm)) , (2.34)

and
L(t) := (L(t;µ0), L(t;µ1) · · · , L(t;µm)) . (2.35)
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Proof. Define the process M0(·) as

M0(t) :=

∫ t

0

(
∫ s

0

h(X(r))dr + ξ(X(s))

)

d (E0 [Z(s) |Fs ]) +

∫ t

0

E0 [Z(s) |Fs ] ξ′(X(s))dX(s),

(2.36)

for 0 ≤ t ≤ T . By (2.28) and Lemma 2.1, M0(·) is the sum of two integrals of square
P0-integrable processes with respect to local (P0,F )-martingales, thus also a local (P0,F )-
martingale. By Itô’s formula, we have

d

(

E0 [Z(t) |Ft ]

(
∫ t

0

h(X(s))ds+ ξ(X(t))

))

=

(
∫ t

0

h(X(s))ds+ ξ(X(t))

)

d (E0 [Z(t) |Ft ])

+ E0 [Z(t) |Ft ]

(

h(X(t)dt+ ξ′(X(t))dX(t) +
1

2
ξ′′(X(t))σ2(t, X(t))dt

)

+ ξ′′(X(t))d 〈E0 [Z(t) |Ft ] , X(t)〉

=dM0(t) + α (t, X(t), L(t), R(t)) dt.

(2.37)

We need to show that M0(·) is a (P0,F )-martingale, and not just a local martingale. It
suffices to show that the family {M0(τ)}τ∈T is uniformly integrable with respect to the
probability measure P0. But M0(·) can be expressed alternatively as

M0(t) =

(

m
∑

j=1

(

pjL(t;µj)

∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds

)

+ e−λtL(t;µ0)

)

(
∫ t

0

h(X(s))ds+ ξ(X(t))

)

−

∫ t

0

α (s,X(s), L(s), R(s))ds.

(2.38)

From the expressions (2.38), (2.31) and Assumption 2.1(3)(5), we know that there exists a
constant C > 0 and a positive integer n, such that

|M0(t)|

≤C

(

m
∑

j=1

L(t;µj)R(t;µj) + L(t;µ0) +

∫ t

0

m
∑

j=1

L(s;µj)R(s;µj) + L(s;µ0) ds

)

sup
0≤s≤T

|X(s)|n,

(2.39)

for all (t, ω) ∈ [0, T ] × Ω. Then, from Lemma 2.1, we know that, under the probability
measure P0, the local martingale M0(·) is both square integrable and of class D on [0, T ].
The later implies that M0(·) is a (P0,F )-martingale.
The process α (·, X(·), L(·), R(·)) is in fact the instantaneous cross variation process between
ξ(X(·)) and E0 [Z(·) |F· ]. �
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Lemma 2.3 For any stopping time τ ∈ T ,

E0

[

E0 [Z(τ) |Fτ ]

(
∫ τ

0

h(X(s))ds+ ξ(X(τ))

)]

=ξ(X(0)) + E0

[
∫ τ

0

α (s,X(s), L(s), R(s))ds

]

.

(2.40)

Proof. This is because

M0(t) = E0 [Z(t) |Ft ]

(
∫ t

0

h(X(s))ds+ ξ(X(t))

)

−

∫ t

0

α (s,X(s), L(s), R(s))ds,

0 ≤ t ≤ T,

(2.41)

is a (P0,F )-martingale, by Lemma 2.2. The optional sampling theorem implies that E0 [M0(τ)] =
M0(0) = ξ(X(0)), or equivalently, that (2.40) holds. �

Theorem 2.1 The value of the optimal stopping problem (2.12) can be expressed in terms
of the P0-expectations as

V (0) = sup
τ∈T

E

[
∫ τ

0

h(X(s))ds+ ξ(X(τ))

]

=ξ(X(0)) + sup
τ∈T

E0

[
∫ τ

0

α (s,X(s), L(s), R(s))ds

]

.

(2.42)

Define another value process by

V0(t) := sup
τ∈Tt

E0

[
∫ τ

t

α (s,X(s), L(s), R(s)) ds

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T. (2.43)

Then, the optimal F -stopping time τ ∗ defined in (2.14) has an alternative representation as

τ ∗ = inf {0 ≤ t ≤ T |V0(t) ≤ 0} . (2.44)

Proof. The first claim can be concluded directly from equality (2.24) and Lemma 2.3. Like
(2.14), the expression (2.44) once again comes from the classical results on optimal stopping
of continuous processes. �

Lemma 2.4 (Strong Markov Property) The triple of processes (X(·), L(·), R(·)) have the
strong Markov property under the measure P0 with respect to the filtration F .

Proof. Denoting 1 = (1, 1, · · · , 1) as the (m+ 1)-dimensional row vector of one’s, and 0 =
(0, · · · , 0) as the m-dimensional row vector of zero’s. The triple (X(·), L(·), R(·)) constitutes
a strong solution to the (2m+ 2)-dimensional SDE



























dX(t) =σ(t, X(t))dW 0(t);

dL(t;µj) =L(t;µj)
b(t, X(t);µj)

σ(t, X(t))
dW 0(t), j = 0, 1, · · · , m;

dR(t;µj) =
L(t;µ0)

L(t;µj)
λe−λtdt, j = 1, · · · , m

(2.45)
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driven by the standard P0-Brownian motion W 0(·) of (2.16), with the initial value

(X(0), L(0), R(0)) = (x0, 1, 0). (2.46)

From Assumption 2.1 (1)(2)(3), the coefficients of the SDE (2.45) are bounded on compact
subsets of R

2m+2 and are locally Lipschitz. The SDE (2.45) has a pathwise unique, strong
solution. The well-posedness of the SDE (2.45), equivalently the well-posedness of the asso-
ciated martingale problem, implies the P0-strong Markov property of (X(·), L(·), R(·)), with
respect to the Borel sigma algebra F (Stroock and Varadhan (1997) [18]). But the filtration
F generated by X(·) is contained in F, and the process (X(·), L(·), R(·)) is F -adapted.
Then the process (X(·), L(·), R(·)) has the strong Markov property under the probability
measure P0 with respect to the filtration F . �

The solution (X(·), L(·), R(·)) to the SDE (2.45) ranges in R × (0,∞)m+1 × [0,∞)m.

Lemma 2.5 (Dynamic Programming Principle)
There exists a deterministic measurable function v0 : [0, T ]×R× (0,∞)m+1 × [0,∞)m → R,
such that

v0(t, X(t), L(t), R(t)) = sup
τ∈Tt

E0

[
∫ τ

t

α (s,X(s), L(s), R(s))ds

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T. (2.47)

For any stopping time τ0 ∈ Tt, the dynamic programming principle

v0(t, X(t), L(t), R(t))

= sup
τ∈Tt

E0

[
∫ τ∧τ0

t

α (s,X(s), L(s), R(s)) ds+ v0 (τ0, X(τ0), L(τ0), R(τ0))1{τ0≤τ}

∣

∣

∣

∣

Ft

]

(2.48)

holds for 0 ≤ t ≤ T .

Theorem 2.2 For any function ψ : [0, T ] × R × R
m+1 × R

m → R, (t, x, l, r) 7→ ψ(t, x, l, r),
denote the infinitesimal generator

A ψ(t, x, l, r)

:=

(

m
∑

j=1

l0
lj
λe−λt ∂

∂rj
+

1

2
σ2(t, x)

∂2

∂x2
+

1

2

m
∑

j=0

ljb(t, x;µj)

(

∂2

∂x∂lj
+

∂2

∂lj∂x

)

+
1

2

m
∑

j,k=0

ljlk
b(t, x;µj)b(t, x;µk)

σ2(t, x)

∂2

∂lj∂lk

)

ψ(t, x, l, r).

(2.49)

The value function v0 defined in (2.47) is a viscosity solution (Definition 4.1 (1)) to the
variational inequality

min

{

−

(

∂

∂t
v0 + A v0 + α

)

(t, x, l, r), (v0 + α) (t, x, l, r)

}

= 0, (2.50)

with the terminal condition
v0(T, x, l, r) = 0, (2.51)

for all 0 ≤ t ≤ T , (x, l, r) ∈ R × (0,∞)m+1 × [0,∞)m.
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Proof. The viscosity solution property is derived from the dynamic programming principle
Lemma 2.5. The readers may refer to section V of [6] Fleming and Soner (1993) for the
derivation of second order HJB PDEs, and to section 5 of [14] Pham (2009) for optimal
stopping problems. �

Remark. The coefficient of the second-order terms of the variational inequality (2.50) does
not satisfy the uniform ellipticity condition. Existence, uniqueness and regularity properties
of classical solutions to degenerate PDEs and variational inequalities have been an entire
rich open area of research. For the purpose of solving the optimization and control problems
in this paper, we shall content ourselves with solutions in the viscosity sense.

2.3 Computing the Value Function

If we denote
y = (x, l0, l1, · · · , lm, r1, · · · , rm), (2.52)

bY (t, y) =

(

0, 0, 0, · · · , 0,
l0
l1
λe−λt, · · · ,

l0
lm
λe−λt

)

, (2.53)

and

σY (t, y) =

(

σ(t, x), l0
b(t, x;µ0)

σ(t, x)
, l1
b(t, x;µ1)

σ(t, x)
, · · · , lm

b(t, x;µm)

σ(t, x)
, 0, · · · , 0

)

, (2.54)

for all (t, y) = (t, x, l, r) in [0, T ]×R×R
m+1×R

m, then the SDE (2.45), which has a pathwise
unique, strong solution

Y (·) = (X(·), L(·;µ0), L(·;µ1), · · · , L(·;µm), R(·;µ1), · · · , R(·;µm)), (2.55)

can be written in the vector form

dY (t) = bY (t, Y (t))dt+ σY (t, Y (t))dW 0(t), 0 ≤ t ≤ T (2.56)

with the initial value
Y (0) = (x0, 1, 0), (2.57)

where W 0(·) is the standard P0-Brownian motion of (2.16). The generator (2.49) of the
second-order parabolic variational inequality (2.50) can be written as

A ψ(t, y) =

(

bY ·Dψ +
1

2
trace

(

σY σ
tr
Y D

2ψ
)

)

(t, y), (2.58)

where σtr
Y denotes the matrix transpose of the row vector σY . The coefficients bY and σY of

the variational inequality (2.50) is locally Lipschitz, but not necessarily globally Lipschitz, in
the space variable over the unbounded domain R× (0,∞)m+1 × [0,∞)m, which is the range
of Y (·) = (X(·), L(·), R(·)). Uniqueness of viscosity solutions to such variational inequalities
remains open, hence the numerical implementation of the variational inequality (2.50) is a
question. In order to enable numerical computation of the value function v0 as in (2.47),
we shall approximate it with a sequence {vn}

∞
n=1 of functions which are unique viscosity
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solutions to some variational inequalities. The sequence of variational inequalities will be
derived from optimal stopping problems of the type (2.12) with finite exit boundaries for the
augmented state processes.

For every n = 1, 2, · · · , define the bounded open domain

On = (−n, n) ×

(

1

n
, n

)m+1

×

(

−
1

n
, n

)m

⊆ R
2m+2, (2.59)

and the exit time
Tn = inf{0 ≤ t ≤ T |Y (t) /∈ On} ∧ T. (2.60)

Denote by T n the set of stopping times with values between 0 and Tn. Instead of (2.12), the
optimization problem that we shall consider is looking for an T -stopping time τ ∗n to achieve
the supremum in

sup
τ∈T n

E

[
∫ τ

0

h(X(s))ds+ ξ(X(τ))

]

= sup
τ∈T

E

[
∫ τ∧Tn

0

h(X(s))ds+ ξ(X(τ))

]

. (2.61)

As n→ ∞, the open domain On converges to R × (0,∞)m+1 × [0,∞)m, hence

lim
n→∞

↑ Tn = T. (2.62)

The following two theorems suggest approximating the value function v0 as in (2.47) by the
unique viscosity solutions vn to a sequence of variational inequalities.

Theorem 2.3 There exists a function vn : [0, T ] × Ōn → R, such that

vn(t, Y (t)) = sup
τ∈Tt

E0

[
∫ τ∧Tn

t

α (s, Y (s)) ds

∣

∣

∣

∣

Ft

]

, 0 ≤ t ≤ T. (2.63)

The value function vn is a viscosity solution to the variational inequality

min

{

−

(

∂

∂t
vn + A vn + α

)

(t, y), (vn + α) (t, y)

}

= 0, (t, y) ∈ Qn \ ∂∗Qn, (2.64)

with boundary condition
vn(t, y) = 0, (t, y) ∈ ∂∗Qn, (2.65)

where
Qn := (0, T ) × On (2.66)

and
∂∗Qn := ({T} × On) ∪ ([0, T ] × ∂On). (2.67)

As n → ∞, the value function vn converges pointwise to the value function v0 defined as in
(2.47).
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Proof. Following the same kind of arguments in subsection 2.2 that lead to Lemma 2.5 and
Theorem 2.2, we may conclude (2.63) and the viscosity solution property of vn as solution to
the variational inequality (2.64). From the polynomial growth rate of the function α defined
in (2.31) and Lemma 2.1, the dominated convergence theorem guarantees the convergence
of vn to v0. �

Lemma 2.6 The value function vn as in (2.63) is Lipschitz over the bounded domain Ōn,
uniformly for all 0 ≤ t ≤ T , meaning that there exists a constant Cn > 0, such that

|vn(t, y1) − vn(t, y2)| ≤ Cn|y
1 − y2|, for all (t, y1), (t, y2) ∈ [0, T ] × Ōn. (2.68)

Proof. Because of the local Lipschitz continuity, Assumption 2.6(1) of the coefficients b and
σ, and Assumption 2.1(5) of the rewards h, ξ′ and ξ′′, the function α defined in (2.31) is
also locally Lipschitz. Let Y y(t) denote the value of the solution to the SDE (2.56) at time
t with initial value Y (0) = y ∈ Ōn. From the estimate

E0

[
∣

∣

∣
Y y1

(t) − Y y2

(t)
∣

∣

∣

]

≤ C|y1 − y2|, (2.69)

it follows that vn is uniformly Lipschitz. (c.f. section 3 of [13] Pham (1998)). �

The collection of all uniformly Lipschitz functions over [0, T ]× Ōn is denoted as CLip([0, T ]×
Ōn).

Theorem 2.4 Suppose vn and v̄n in CLip([0, T ]×Ōn) are, respectively, a viscosity subsolution
and a viscosity supersolution to the variational inequality (2.64) with the boundary condition
(2.65), then the comparison result

sup
Q̄n

(vn − v̄n) = sup
∂∗Qn

(vn − v̄n) = 0 (2.70)

holds, hence the viscosity solution vn to (2.64), (2.65) is unique.

Proof. (outline) For variational inequalities with Lipschitz coefficients, the proof for unique-
ness of viscosity solutions is a streamlined procedure using the Crandall-Ishii maximum
principle. Our proof is tailored on Lemma 7.1 and Theorem 8.1 for second-order parabolic
HJB PDEs with Lipschitz coefficients, in section V of [6] Fleming and Soner (1993), in the
absence of the controls. To adjust for the variational inequality, when subtracting the two
inequalities which define the subsolution and the supersolution, we shall use the fact that
min{a, b} −min{c, d} ≤ 0 implies that either a ≤ c or b ≤ d, as in the proof of Theorem 4.1
in [13] Pham (1998).
For completeness of the exposition, a detailed proof is provided in the Appendix. �

The solution to the original variational inequality of (2.50) may or may not be unique.
The one of interest is the solution v0 which is the limit

v0 = lim
n→∞

vn. (2.71)
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Theorem 2.3 and Theorem 2.4 suggest that the value function v0 as in (2.47) can be ap-
proximated as the limit (2.71), and that each vn is the unique solution to the numerically
implementable variational inequality (2.64). Having solved the variational inequalities, the
optimal stopping time and the value function of the optimization problem (2.12) are then
obtained in terms of the limit v0 of the solutions vn, and of the triple (X(·), L(·), R(·)).
The triple (X(·), L(·), R(·)) of processes, which is adapted to the filtration F generated by
the observation X(·), can be viewed as a ”sufficient statistic” for the optimization problem
(2.12). This ”sufficient statistic” that the decision maker need to monitor remains the same
for all cumulative reward functions h(·) and all terminal reward functions ξ(·) in (2.12).

Proposition 2.1 The value function of the optimal stopping problem (2.12) can be calcu-
lated as

sup
τ∈Tt

E

[
∫ τ

t

h(X(s))ds+ ξ(X(τ))

∣

∣

∣

∣

Ft

]

= ξ(X(t)) + v0(t, X(t), L(t), R(t)), (2.72)

for all 0 ≤ t ≤ T . In particular,

sup
τ∈T

E

[
∫ τ

0

h(X(t))dt+ ξ(X(τ))

]

= ξ(X(0)) + v0(0, X(0), 1, 0). (2.73)

The optimal F -stopping time τ ∗ in (2.14) that achieves the supremum in (2.12) has another
representation as

τ ∗ = inf {0 ≤ t ≤ T |v0(t, X(t), L(t), R(t)) ≤ 0} . (2.74)

Proof. Use Theorem 2.1 and Lemma 2.5. �

2.4 Examples

Example 2.3 (Brownian motion with drift uncertainty, continued)
Let the diffusion X(·) be the drifted Brownian motion described in Example 2.1. We look for
an F -stopping time τ ∗ to achieve the supremum

sup
τ∈T

E [X(τ)] . (2.75)

Solution. The likelihood ratio process in (2.19) has the form

L(t; u) = exp

{

uX(t) −
1

2
u2t

}

, 0 ≤ t ≤ T, (2.76)

for u = µ0, µ+, µ−. Under the P0-measure defined in (2.21) via the Radon-Nikodym derivative

Z(t) = exp

{
∫ t

0

θ(s)dX(s) −
1

2

∫ t

0

θ2(s)ds

}

=

(1{U=µ+}L(t;µ+)
L(ρ;µ0)

L(ρ;µ+)
+ 1{U=µ−}L(t;µ−)

L(ρ;µ0)

L(ρ;µ−)

) 1{ρ<t} + 1{ρ≥t}L(t;µ0),

(2.77)
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the process X(·) is a standard Brownian motion, and the likelihood ratio process L(·) is a
geometric Brownian motion. Calculating the posterior expectation of Z(·) as in (2.25),

E0 [Z(t) |Ft ]

=

(

p+L(t;µ+)

∫ t

0

L(s;µ0)

L(s;µ+)
λe−λsds+ p−L(t;µ−)

∫ t

0

L(s;µ0)

L(s;µ−)
λe−λsds

)

+ e−λtL(t;µ0).

(2.78)

From (2.31),
α(t, x, l, r) = p+µ+l+r+ + p−µ−l−r− + µ0e

−λtl0. (2.79)

Define

R(t;µ±) :=

∫ t

0

L(s;µ0)

L(s;µ±)
λe−λsds, 0 ≤ t ≤ T. (2.80)

The value function

v0(t, X(t), L(t), R(t))

= sup
τ∈Tt

E0

[

∫ τ

t

(

p+µ+L(s;µ+)R(s;µ+) + p−µ−L(s;µ−)R(s;µ−) + µ0e
−λtL(s;µ0)

)

ds

∣

∣

∣

∣

∣

Ft

]

(2.81)

is a viscosity solution to the variational inequality (2.50) with infinitesimal generator

A v0(t, x, l, r)

=

(

λe−λt

(

l0
l+

∂

∂r+
+
l0
l−

∂

∂r−

)

+
1

2

∂2

∂x2

+
1

2

(

µ2
+l

2
+

∂2

∂l2+
+ µ+µ−l+l−

(

∂2

∂l+∂l−
+

∂2

∂l−∂l+

)

+ µ2
−l

2
−

∂2

∂l2−

)

+
1

2
µ+l+

(

∂2

∂x∂l+
+

∂2

∂l+∂x

)

+
1

2
µ−l−

(

∂2

∂x∂l−
+

∂2

∂l−∂x

)

)

v0(t, x, l, r).

(2.82)

Expression (2.76) of the likelihood ratio suggests reduction of dimensionality for the varia-
tional inequality (2.50). For (t, x, r) ∈ [0, T ] × R × [0,∞)2, define the function

ᾱ(t, x, r)

=p+µ+ exp

{

µ+x−
1

2
µ2

+t

}

r+ + p−µ− exp

{

µ−x−
1

2
µ2
−t

}

r− + µ0e
−λt exp

{

µ0x−
1

2
µ2

0t

}

.

(2.83)

By (2.76), the value function (2.81) becomes

v0(t, X(t), L(t), R(t)) = v̄0(t, X(t), R(t)) = sup
τ∈Tt

E0

[
∫ τ

t

ᾱ(s,X(s), R(s))ds

∣

∣

∣

∣

Ft

]

, (2.84)
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a deterministic function v̄0 of the time t, the state processesX(t) and the augmented variables
R(t;µ+) and R(t;µ−) only. The likelihood ratios L have disappeared. The function v̄0 is a
viscosity solution to the variational inequality











min

{

−

(

∂

∂t
v̄0 + Ā v̄0 + ᾱ

)

(t, x, r), (v̄0 + ᾱ) (t, x, r)

}

= 0;

v0(T, x, r) = 0,

(2.85)

for 0 ≤ t ≤ T , (x, r) ∈ R × [0,∞)2, where the infinitesimal generator Ā has the form

Ā v̄0(t, x, r) =

(

1

2

∂2

∂x2
+ λe−λt

(

exp

{

(µ0 − µ+)x−
1

2
(µ2

0 − µ2
+)t

}

∂

∂r+

+ exp

{

(µ0 − µ−)x−
1

2
(µ2

0 − µ2
+)t

}

∂

∂r−

))

v̄0(t, x, r).

(2.86)

�

Example 2.4 (Geometric Brownian motion with drift uncertainty, continued)
The diffusion X(·) is the geometric Brownian motion in Example 2.2. The goal is again to
find an F -stopping time τ ∗ that achieves the supremum in (2.75).

Solution. We may compute to get the likelihood ratio processes

L(t; u) = exp

{

u

σ2

∫ t

0

dX(s)

X(s)
−

u2

2σ2
t

}

, 0 ≤ t ≤ T, (2.87)

for u ∈ Θ, and the Radon-Nikodym derivative

Z(t) = exp

{
∫ t

0

θ(s)

σ2X(s)
dX(s) −

1

2

∫ t

0

θ(s)

σ2
ds

}

=

(

m
∑

j=1

1{U=µj}L(t;µj)
L(ρ;µ0)

L(ρ;µj)

)1{ρ<t} + L(t;µ0)1{ρ≥t}, 0 ≤ t ≤ T.

(2.88)

The posterior expectation E0 [Z(t) |Ft ] has the same expression as (2.78), the augmented
state variable R(t) is defined as in (2.33) and (2.34), the function α in (2.31) becomes

α(t, x, l, r) = x

(

m
∑

j=1

pjµjljrj

)

+ µ0e
−λtxl0, (2.89)

and the value function

v0(t, X(t), L(t), R(t))

= sup
τ∈Tt

E0

[

∫ τ

t

X(s)

(

m
∑

j=1

piµjL(s;µj)R(s;µj) + µ0e
−λtL(s;µ0)ds

)
∣

∣

∣

∣

∣

Ft

]

(2.90)
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is a viscosity solution to the variational inequality (2.50) with infinitesimal generator

A v0(t, x, l, r) =

(

λe−λt
m
∑

j=1

l0
lj

∂

∂rj

+
1

2
σ2x2 ∂

2

∂x2
+

1

2

m
∑

j,k=0

µjµk

σ2
ljlk

∂2

∂lj∂lk

+
1

2

m
∑

j=0

µjljx

(

∂2

∂x∂lj
+

∂2

∂lj∂x

)

)

v0(t, x, l, r),

(2.91)

for 0 ≤ t ≤ T , (x, l, r) ∈ (0,∞) × (0,∞)m+1 × [0,∞)m.
The solution in this geometric Brownian motion case connects with the routine practice in
the filtering theory via the change of variable

X̄(t) =

∫ t

0

dX(s)

X(s)
=

∫ t

0

θ(s)ds+ σW (t), 0 ≤ t ≤ T. (2.92)

The process X̄(·) is a (P0,F )-martingale with quadratic variation σ2t. From the change of
variable (2.92), the likelihood ratios in (2.87) can be rewritten as

L(t; u) = exp

{

u

σ2
X̄(t) −

u2

2σ2
t

}

, 0 ≤ t ≤ T, (2.93)

for u ∈ Θ. It follows that

R(t;µj) =

∫ t

0

λe−λs exp

{

µ0 − µj

σ2
X̄(s) −

µ2
0 − µ2

j

2σ2
s

}

ds, 0 ≤ t ≤ T, (2.94)

for j = 1, · · · , m. For (t, x, x̄, r) ∈ [0, T ] × (0,∞) × R × [0,∞)m, define the function

ᾱ(t, x, x̄, r) = x

m
∑

j=1

pjµj exp

{

µj

σ2
x̄−

µ2
j

2σ2
t

}

rj + µ0e
−λt exp

{

µ0

σ2
x̄−

µ2
0

2σ2
t

}

. (2.95)

By (2.93) and (2.94), the value function (2.90) becomes

v0(t, X(t), L(t), R(t)) = v̄0(t, X(t), X̄(t), R(t)) = sup
τ∈Tt

E0

[
∫ τ

t

ᾱ(s,X(s), X̄(t), R(s))ds

∣

∣

∣

∣

Ft

]

,

(2.96)

a deterministic function v̄0 of time t, state processes X(t) and the augmented processes X̄(t)
and R(t). The (m+1)-dimensional likelihood ratio process L(·) as argument of v0 is replaced
by the one-dimensional process X̄(·) as argument of v̄0. This reduces m dimensions. The
function v̄0 is a viscosity solution to the variational inequality











min

{

−

(

∂

∂t
v̄0 + Ā v̄0 + ᾱ

)

(t, x, x̄, r), (v̄0 + ᾱ) (t, x, x̄, r)

}

= 0;

v̄0(T, x, x̄, r) = 0,

(2.97)
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for 0 ≤ t ≤ T , (x, x̄, r) ∈ (0,∞)×R× [0,∞)m, where the infinitesimal generator Ā has the
form

Ā v̄0(t, x, x̄, r)

=

(

1

2
σ2x2 ∂

2

∂x2
+

1

2
σ2 ∂

2

∂x̄2
+

1

2
σ2x

(

∂2

∂x∂x̄
+

∂2

∂x̄∂x

)

+ λe−λt exp

{

µ0 − µj

σ2
x̄−

1

2

µ2
0 − µ2

j

σ2
t

}

∂

∂rj

)

v̄0(t, x, x̄, r).

(2.98)

The dimensionality of the variational inequality can be further reduced, by using an alter-
native expression

L(t;µj) = exp

{

1

2

(

µj −
µ2

j

σ2

)

t

}

X(t)
µj

σ2 , 0 ≤ t ≤ T, (2.99)

of the likelihood ratio processes (2.99), in terms of X(t). Then,

R(t;µj) =

∫ t

0

λe−λs

m
∑

j=1

exp

{

1

2

(

µ0 − µj −
µ2

0 − µ2
j

σ2

)

s

}

X(s)
µ0−µj

σ2 ds, 0 ≤ t ≤ T, (2.100)

for j = 1, · · · , m. Define the function

¯̄α(t, x, y, r) =

m
∑

j=1

pjµjx
µj

σ2
+1rj + µ0e

−λtx
µ0

σ2
+1. (2.101)

By (2.99) and (2.100), the value function (2.90) can be written as

v0(t, X(t), L(t), R(t)) = ¯̄v0(t, X(t), R(t)) = sup
τ∈Tt

E0

[
∫ τ

t

¯̄α(s,X(s), R(s))ds

∣

∣

∣

∣

Ft

]

. (2.102)

The deterministic function ¯̄v0: [0, T ] × (0,∞) × [0,∞)m → R, (t, x, r) 7→ ¯̄v0(t, x, r), is a
viscosity solution to the variational inequality











min

{

−

(

∂

∂t
¯̄v0 + ¯̄

A ¯̄v0 + ¯̄α

)

(t, x, r), (¯̄v0 + ¯̄α) (t, x, r)

}

= 0;

¯̄v0(T, x, r) = 0,

(2.103)

for 0 ≤ t ≤ T , (x, r) ∈ (0,∞) × [0,∞)m, with the infinitesimal generator

¯̄
A ¯̄v0(t, x, r)

=

(

1

2
σ2x2 ∂

2

∂x2
+ λe−λt

m
∑

j=1

exp

{

1

2

(

µ0 − µj −
µ2

0 − µ2
j

σ2

)

t

}

x
µ0−µj

σ2
∂

∂rj

)

¯̄v0(t, x, r).
(2.104)

Compared to the arguments of v0, the (m + 1)-dimensional likelihood ratio variable has
disappeared from ¯̄v0. �
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2.5 Comparison with Robust Optimization

The Bayes sequential approach that we take incorporates implicit parameter estimation into
decision making, based on the a priori knowledge about the parameter. Comparing the vari-
ational inequality (2.50) with the one for the counterpart optimal stopping problem without
model uncertainty, the additional variables l and r in the arguments of the value function
v0, together with the additional terms in the generator (2.49), are extra efforts required to
estimate the jump time ρ and the new value U of the parameter θ(·).

To cope with model uncertainty, an alternative philosophy to the Bayes sequential approach
is the robust optimization, which conducts maximization in the worst-case scenarios. A
robust optimal stopping time is one of the Brownian filtration F W , a stopping time that
achieves the supremum in

sup
τ∈ FW -stopping times

inf
ρ, u

E

[
∫ τ

0

h(X(t))dt+ ξ(X(τ))

]

, (2.105)

instead of in (2.12). The infimum in (2.105) is taken over all distributions with nonnegative
support for ρ, and all the possible values u ∈ Θ. As a variant of discretionary stopping,
the problem (2.105) can be viewed as a zero-sum game between a stopper who chooses the
stoping time τ and a controller who decides the regime switch by choosing ρ and u, the type
of zero-sum game of control and stopping studied in [10] by Karatzas and Zamfirescu (2008).

Particularly in the context of Examples 2.3 and 2.4, the goal (2.105) becomes

sup
τ∈ FW -stopping times

inf
ρ, u

E [X(τ)] . (2.106)

The parameter space Θ is {µ0, µ+, µ−} in Example 2.3, and is {µ0, µ1, · · · , µm} in Example
2.4.

In Example 2.3, the infimum in (2.106) is achieved by

µ∗
robust = min{µ0, µ+, µ−}, (2.107)

and

ρ∗robust =

{

0, µ0 > µ∗
robust;

T, µ0 ≤ µ∗
robust.

(2.108)

The goal (2.106) then becomes finding a stopping time τ ∗robust to achieve the supremum

sup
τ∈ FW -stopping times

E [µ∗
robustτ +W (τ)] . (2.109)

In Example 2.4, the infimum in (2.106) is achieved by

µ∗
robust = min{µ0, µ1, · · · , µm}, (2.110)

19



and ρ∗robust as in (2.108). We need to find a stopping time τ ∗robust to achieve the supremum

sup
τ∈ FW -stopping times

E

[

exp

{(

µ∗
robust −

1

2
σ2

)

τ +W (τ)

}]

. (2.111)

Both (2.109) and (2.111) are optimal stopping problems of supermartingales or submartin-
gales of the Brownian motion W (·), depending on whether µ∗

robust ≤ 0 or µ∗
robust ≥ 0. The

resulted robust optimal stopping time is the same for the two examples, being

τ ∗robust =











0, µ∗
robust < 0;

any time on [0, T ], µ∗
robust = 0;

T, µ∗
robust > 0.

(2.112)

In both examples, if µ∗
robust > 0, each realization of the parameter θ(·) produces a submartin-

gale, then the optimal stopping problem is trivial. In the case µ∗
robust < 0, if at least one

number in the parameter space Θ is positive, there is still chance to stop at some time for
an average reward greater than X(0) = x0. Since τ ∗robust = 0 is also a stopping time in T ,
the Bayes sequential optimal stopping rule τ ∗ will stop for an expected reward no lower than
x0. The optimal value from the Bayes sequential approach can be computed buy solving
the variational inequalities (2.50) with the infinitesimal generator (2.91) and the terminal
condition (2.51), following the approximation scheme suggested in section 2.3. Speaking of
the Brownian motion and the geometric Brownian motion examples with possible negative
drift, robust optimization makes a most conservative decision:“ If you consider all the ter-
rible things that can happen to you during the day, what is the point of getting out in the
morning? ”

3 Impulse Control

3.1 The Model

With τ0 = 0 and for every i = 1, 2, · · · , N , inductively specify a stopping time τi with respect
to the filtration F = {Ft}0≤t≤T , which is generated by the process X(·). Let X(0) = x0.
On the time interval t ∈ (τi−1, τi), the process X(·) evolves according to the drift-uncertain
diffusion (2.1) described in subsection 2.1. The coefficients b and σ satisfy Assumption 2.1
(1)(2)(3). In the differential form, the process X(·) is the pathwise unique, strong solution
to the stochastic differential equation

dX(t) = b(t, X(t); θ(t))dt+ σ(t, X(t))dW (t), τi−1 < t < τi, (3.1)

with the initial value X(τi−1). At every stopping time τi, there is an intervention ζi, that is,
an R-valued Fτi− - measurable random variable which causes the process X(·) to jump at a
predictable size

X(τi) −X(τi−) = γ(X(τi−), ζi) <∞. (3.2)

The jump size γ : R × R → R is a deterministic measurable function whose growth rate
will be specified in next subsection. The pair (τi, ζi) consisting of an F - stopping time τi
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and an Fτi− - measurable intervention ζi is called an impulse control. The admissible con-
trol set, denoted as I , is the set of all N -tuples (τ, ζ) = {(τi, ζi)}

N
i=1 of such impulse controls.

Over the entire time horizon [0, T ], the process X(·) can be written as

X(t) = X(0) +

∫ t

0

b(s,X(s); θ(s))ds+

∫ t

0

σ(s,X(s))dW (s) +
∑

τi≤t

γ(X(τi−), ζi), 0 ≤ t ≤ T.

(3.3)

3.2 General Theory

This subsection solves the problem of choosing an optimal (τ ∗, ζ∗) = {(τ ∗i , ζ
∗
i )}

N
i=1 over all

admissible impulse controls (τ, ζ) = {(τi, ζi)}
N
i=1 in I to achieve the maximal expected

reward

sup
(τ,ζ)∈I

E

[

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

]

. (3.4)

The rewards ξ and h : R → R are deterministic measurable functions satisfying Assumption
2.1 (3)-(4). Besides, we impose polynomial growth condition on the deterministic measurable
functions γ and c : R × R → R in the state variable.

Assumption 3.1 (1) The functions γ(x, z) and c(x, z) have polynomial growth rates in
x ∈ R, uniformly for all z ∈ R.

Let G = {G }0≤t≤T be the filtration defined as in (2.15), with X(·) defined in (3.2). The
continuous part of the state process X(·), denoted by

I(t) :=X(t) −
∑

τi≤t

γ(X(τi−), ζi)

=x0 +

∫ t

0

b(s,X(s); θ(s))ds+

∫ t

0

σ(s,X(s))dW (s), 0 ≤ t ≤ T,

(3.5)

is an F -adapted process. Construct a probability measure P0, under which the F -adapted
process

W 0(t) :=

∫ t

0

σ−1(s,X(s))dI(s), 0 ≤ t ≤ T (3.6)

is a standard Brownian motion. Then the process

I(t) = x0 +

∫ t

0

σ(s,X(s))dW 0(s), 0 ≤ t ≤ T (3.7)

is a continuous local (P0,F )-martingale with its quadratic variation process

〈I〉t =

∫ t

0

σ2(s,X(s))ds, 0 ≤ t ≤ T. (3.8)
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In the probability space (Ω,G ,P0), the random variables ρ and U are independent, and the
random vector (ρ, U) is independent of the filtration F , thus independent of the processes
X(·) and I(·). We assign the independent random variables ρ and U the same P0-prior
distributions mandated by (2.4) and (2.5).

Define the G -adapted Radon-Nikodym derivative process by

Z(t) = exp

{
∫ t

0

b(s,X(s); θ(s))

σ2(s,X(s))
dI(s) −

1

2

∫ t

0

b2(s,X(s); θ(s))

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T. (3.9)

With this Radon-Nikodym derivative Z(·), and via the expression (2.21), define the proba-
bility measure P̃ which is equivalent to P0. Under the probability measure P̃, the random
variables ρ and U remains independent with prior distributions (2.4) and (2.5). Again by the
change of measure for local martingales in [15] Van Schuppen and Wong (1974), the process

{

I(t) −

∫ t

0

b(s,X(s); θ(s))ds

}

0≤t≤T

(3.10)

is a local (P̃,G )-martingale, also having the instantaneous quadratic variation σ2(·, X(·)).
The process W̃ (·) defined as

W̃ (t) :=

∫ t

0

σ−1(s,X(s))dI(s)−

∫ t

0

σ−1(s,X(s))b(s,X(s); θ(s))ds, 0 ≤ t ≤ T (3.11)

is a continuous local (P̃,G )-martingale with quadratic variation t, thus a standard P̃-Brownian
motion. The process X(·) satisfies the equation (3.3) with the P-Brownian motion W (·) re-
placed by the P̃-Brownian motion W̃ (·). It then follows from the pathwise uniquess of the
solution to equation (3.3) thatX(·) has the same distribution under the probability measures
P̃ and P.

The change of measure, once again, transforms optimization under the measure P into opti-
mization under the measure P0, by

sup
(τ,ζ)∈I

E

[

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

]

= sup
(τ,ζ)∈I

Ẽ

[

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

]

= sup
(τ,ζ)∈I

E0

[

Z(T )

(

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

)]

= sup
(τ,ζ)∈I

E0

[

E0 [Z(T ) |FT ]

(

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

)]

.

(3.12)

For every number u ∈ Θ, we introduce the F -adapted likelihood ratio process

L(t; u) = exp

{
∫ t

0

b(s,X(s); u)

σ2(s,X(s))
dI(s) −

1

2

∫ t

0

b2(s,X(s); u)

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T, (3.13)

22



a continuous process satisfying the stochastic integral equation

L(t; u) =

∫ t

0

L(s; u)
b(s,X(s); u)

σ2(s,X(s))
dI(s), 0 ≤ t ≤ T. (3.14)

The Radon-Nikodym derivative Z(·) can be written in terms of the likelihood ratio L(·; u) and
the random variables ρ and U as in (2.20). Because of the independence of the observations
X(·) and the prior distributions of ρ and U under the reference measure P0, the posterior
P0-expectation of Z(·) is the continuous process E0 [Z(t) |Ft ] in the form of (2.25). Applying
Itô’s formula to E0 [Z(t) |Ft ], and using (2.28) and (3.14), we get, for 0 ≤ t ≤ T ,

d (E0 [Z(t) |Ft ])

=

(

m
∑

j=1

pj

(
∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds

)

L(t;µj)
b(t, X(t);µj)

σ2(t, X(t))
+ e−λtL(t; u)

b(t, X(t);µ0)

σ2(t, X(t))

)

dI(t).

(3.15)

Both the likelihood ratio process L(·; u) and the posterior expectation process {E0 [Z(t) |Ft ]}0≤t≤T

of the Radon-Nikodym derivative are local (P0,G )-martingales.

Lemma 3.1 For 0 ≤ t ≤ T , x ∈ R
d, l = (l0, l1, · · · , lm) ∈ R

m+1, r = (r1, · · · , rm) ∈ R
m,

and z ∈ R, let the function α be as in (2.31), and define the function β as

β(t, x, l, r, z)

=

(

m
∑

j=1

pjljrj + e−λtl0

)

(ξ(x+ γ(x, z)) − ξ(x) + ξ′(x)γ(x, z) + c(x, z)) .
(3.16)

Then, for 0 ≤ t ≤ T , we have

E0 [Z(t) |Ft ]

(
∫ t

0

h(X(s))ds+ ξ(X(t))

)

=M0(t) +

∫ t

0

α (s,X(s), L(s), R(s))ds+
∑

τi≤t

β(τi, X(τi−), L(τi−), R(τi−), ζi),
(3.17)

where M0(·) is some square integrable (P0,F )-martingale with M0(0) = ξ(X(0)), and the
processes L(·) and R(·) are defined as in (3.13), (2.35), (2.33) and (2.34).

Proof. Applying Itô’s formula for semimartingales with jumps,

E0 [Z(t) |Ft ]

(

∫ t

0

h(X(s))ds+ ξ(X(t)) +
∑

τi≤t

c(X(τi−), ζi)

)

=ξ(X(0)) +

∫ t

0

(

∫ s−

0

h(X(u))du+ ξ(X(s−)) +
∑

τi≤s−

c(X(τi−), ζi)

)

dE0 [Z(s) |Fs ]

+

∫ t

0

E0 [Z(s−) |Fs− ] ξ′(X(s−))dI(s)

+

∫ t

0+

α (s−, X(s−), L(s−), R(s−)) ds+
∑

τi≤t

β(τi, X(τi−), L(τi−), R(τi−), ζi).

(3.18)
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By change of variables and the continuity of Riemann integrals,
∫ t

0+

α (s−, X(s−), L(s−), R(s−)) ds

=

∫ t−

0

α (s,X(s), L(s), R(s))ds

=

∫ t

0

α (s,X(s), L(s), R(s))ds.

(3.19)

Define

M0(t) :=ξ(X(0)) +

∫ t

0

(

∫ s−

0

h(X(u))du+ ξ(X(s−)) +
∑

τi≤s−

c(X(τi−), ζi)

)

dE0 [Z(s) |Fs ]

+

∫ t

0

E0 [Z(s−) |Fs− ] ξ′(X(s−))dI(s).

(3.20)

From (3.15),

M0(t) := ξ(X(0))+
∫ t

0

(

E0 [Z(s−) |Fs− ] ξ′(X(s−)) +

(

∫ s−

0

h(X(u))du+ ξ(X(s−)) +
∑

τi≤s−

c(X(τi−), ζi)

)

·

(

m
∑

j=1

pj

(
∫ t

0

L(s;µ0)

L(s;µj)
λe−λsds

)

L(t;µj)
b(t, X(t);µj)

σ2(t, X(t))
+ e−λtL(t; u)

b(t, X(t);µ0)

σ2(t, X(t))

))

dI(s),

(3.21)

an integral of P0-square integrable processes with respect to the local (P0,F )-martingale
I(·), hence M0(·) is also a local (P0,F )-martingale.
The proof of P0-uniform integrability of {M0(τ)}τ∈T is similar to that in the proof of Lemma
2.2.

�

Lemma 3.2 For any impulse control (τ, ζ) ∈ I ,

E0

[

E0 [Z(T ) |FT ]

(

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

)]

=ξ(X(0)) + E0

[

∫ T

0

α (s,X(s), L(s), R(s))ds+
∑

τi≤T

β(τi, X(τi−), L(τi−), R(τi−), ζi)

]

.

(3.22)

Proof. This result follows from Lemma 3.1. �

Lemma 3.3 The triple (X(·), L(·), R(·)) is a (2m+2)-dimensional Markov process on every
time interval [τi, τi+1), for i = 0, 1, · · · , N − 1.
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Proof. For t ∈ (τi, τi+1), the state process X(t) is continuous, so dI(t) = dX(t), where
I(·) is the continuous part defined in (3.5). The triple (X(·), L(·), R(·)) is then the pathwise
unique, strong solution to the SDE (2.45) with the initial value (X(τi), L(τi), R(τi)) at the
time τi. The Markovian property follows from Lemma 2.4. �

Let I M be the collection of Markovian impulse controls (τ, ζ) = {(τi, ζi)}
N
i=1, where the

interventions satisfy
ζi = ζ̄i(τi, X(τi−), L(τi), R(τi)), (3.23)

for some deterministic measurable function ζ̄i : [0, T ] × R × R
m × R

m+1.

Theorem 3.1 The impulse control problem (3.4) is equivalent to a non-stationary Marko-
vian impulse control problem under measure P0 with respect to the filtration F , in the sense
that

sup
(τ,ζ)∈I

E

[

∫ T

0

h(X(t))dt+ ξ(X(T )) +
∑

τi≤T

c(X(τi−), ζi)

]

=ξ(X(0)) + sup
(τ,ζ)∈I

E0

[

∫ T

0

α (s,X(s), L(s), R(s))ds+
∑

τi≤T

β(τi, X(τi−), L(τi−), R(τi−), ζi)

]

=ξ(X(0)) + sup
(τ,ζ)∈I M

E0

[

∫ T

0

α (s,X(s), L(s), R(s))ds+
∑

τi≤T

β(τi, X(τi−), L(τi−), R(τi−), ζi)

]

.

(3.24)

Proof. The first equality comes from identity (3.12), Lemma 3.2. By Lemma 3.3, the aug-
mented state process (X(·), L(·), R(·)) is Markovian between any two intervention times τi
and τi+1, then the supremum over all admissible controls is achieved among the Markovian
controls (c.f. section 1.4 of [11] Krylov (1980) and section 3.1 of [12] Øksendal and Sulem
(2007)). �

The rest of this subsection will characterize the value function (3.24) as viscosity solutions
to a chain of N interconnected variational inequalities. The impulse control problem was
studied by Bensoussan and Lions in [1], [2], [3] and [4] in the 1970’s. Again, due to the
degeneracy of the coefficients of the second order terms of the variational inequalities (3.29)
and (3.30), it will not be handy to demonstrate the existence and regularity of their solu-
tions, which is required by the verification theorem approach. Following routine arguments
using the dynamic programming principle, the value function (3.24) can be shown to solve
the variational inequalities (3.29) and (3.30) in the viscosity sense.

Lemma 3.4 (Dynamic Programming Principle)
For any k ∈ {1, 2, · · · , N}, and any 0 ≤ t ≤ T , let It,k be the set of admissible interven-
tions {(τN−k+1, ζN−k+1), (τN−k+2, ζN−k+2), · · · , (τN , ζN)} such that τN−k+1 ≥ t. There exists
a deterministic measurable function v0, v1, · · · , vN : [0, T ] × R × (0,∞)m+1 × [0,∞)m → R,
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such that

vk(t, x, l, r)

= sup
{(τi,ζi)}N

i=N−k+1
∈It,k

E0

[

∫ T

t

a (s,X(s), L(s), R(s)) ds+

N
∑

i=N−k+1

β(τi, X(τi−), L(τi−), R(τi−), ζi)

∣

∣

∣

∣

∣

Ft

]

,

(3.25)

for k = 1, · · · , N , and

v0(t, x, l, r) = E0

[
∫ T

t

α (s,X(s), L(s), R(s)) ds

∣

∣

∣

∣

Ft

]

. (3.26)

The the value functions v1, · · · , vN satisfy the dynamic programming principle

vk(t, x, l, r)

= sup
(τN−k+1,ζN−k+1)∈It,1

E0

[

∫ τN−k+1

t

α (s,X(s), L(s), R(s))ds

+ β(τN−k+1, X(τN−k+1−), L(τN−k+1−), R(τN−k+1−), ζN−k+1)

+ vk−1(τN−k+1, X(τN−k+1), L(τN−k+1), R(τN−k+1), ζN−k+1)

∣

∣

∣

∣

∣

Ft

]

.

(3.27)

Theorem 3.2 For any function f : [0, T ]×R× (0,∞)m+1× [0,∞)m → R, define a mapping
M by

(M f) (t, x, l, r) := sup
z∈R

{f(t, x+ γ(x, z), l, r) + β(t, x, l, r, z)}, (3.28)

for all (t, x, l, r) ∈ [0, T ] × R × (0,∞)m+1 × [0,∞)m, then the value functions v0, v1, · · · , vN

defined in Lemma 3.4 are viscosity solutions (Definition 4.1 (2)) to the variational inequal-
ities

min

{

−

(

∂

∂t
vk + A vk + α

)

(t, x, l, r), (vk − M vk−1) (t, x, l, r)

}

= 0, (3.29)

for k = 1, 2, · · · , N , and
(

∂

∂t
v0 + A v0 + α

)

(t, x, l, r) = 0, (3.30)

with the terminal condition
v0(T, x, l, r) = 0, (3.31)

for all 0 ≤ t ≤ T and (x, l, r) ∈ R × (0,∞)m+1 × [0,∞)m. The infinitesimal generator A is
defined in (2.49).
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3.3 Computing the Value Function

With the notations inherited from section 2.3, the coefficients bY and σY are again locally
Lipschitz but not necessarily globally Lipschitz, so the solutions to the variational inequalities
(3.29) and (3.30) with the boundary condition (3.31) are not necessarily unique. Like in
section 2.3, we need to approximate the set of solutions which provide the value functions
(3.25) and (3.26). To get uniqueness of solutions to the variational inequalities associated
to the approximating sequence of impulse control problems, in addition to Assumption 3.1
(1), the functions γ and c are assumed locally Lipschitz.

Assumption 3.1 (continued)
(2) For every compact subset Kn ⊂ R×R

m+1×R
m, there exists a constant Cn > 0, uniformly

for all 0 ≤ t ≤ T and for all deterministic measurable functions ζ̄ : [0, T ]×R×R
m ×R

m+1,
such that

|γ(x1, ζ̄(t, x1, l1, r1)) − γ(x2, ζ̄(t, x2, l2, r2))| + |c(x1, ζ̄(t, x1, l1, r1)) − c(x2, ζ̄(t, x2, l2, r2))|

≤Cn(|x1 − x2| + |l1 − l2| + |r1 − r2|),

(3.32)

for all (x1, l1, r1), (x2, l2, r2) ∈ Kn.

The following theorems describe the approximating scheme to compute the value functions
(3.25) and (3.26).

Theorem 3.3 There exists a function vn
k : [0, T ] × Ōn → R, such that

vn
k (t, Y (t)) = sup

{(τi,ζi)}N
i=N−k+1

∈It,k, τN≤Tn

E0

[

∫ Tn

t

α (s, Y (s)) ds+
N
∑

i=N−k+1

β(τi, Y (τi−), ζi)

∣

∣

∣

∣

∣

Ft

]

,

(3.33)
0 ≤ t ≤ T , for k = 1, · · · , N , and

vn
0 (t, x, l, r) = E0

[
∫ Tn

t

α (s, Y (s)) ds

∣

∣

∣

∣

Ft

]

. (3.34)

The value functions vn
0 , v

n
1 , · · · , v

n
N are viscosity solutions to the variational inequalities

min

{

−

(

∂

∂t
vn + A vn + α

)

(t, y), (vn + α) (t, y)

}

= 0, (t, y) ∈ Qn \ ∂∗Qn, (3.35)

for k = 1, · · · , N , and
(

∂

∂t
vn
0 + A vn

0 + α

)

(t, y) = 0, (t, y) ∈ Qn \ ∂∗Qn, (3.36)

with the boundary condition
vn
0 (t, y) = 0, (t, y) ∈ ∂∗Qn. (3.37)

As n→ ∞, the value function vn
k converges pointwise to the value function vk defined as in

(3.25) and (3.26), for k = 0, 1, · · · , N .
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Lemma 3.5 For k = 0, 1, · · · , N , the value functions vn
k as in (3.33) and (3.34) are Lips-

chitz over the bounded domain Ōn, uniformly for all 0 ≤ t ≤ T , meaning that there exists a
constant Cn > 0, such that

|vn
k (t, y1) − vn

k (t, y2)| ≤ Cn|y
1 − y2|, for all (t, y1), (t, y2) ∈ [0, T ] × Ōn. (3.38)

Proof. The same as proving Lemma 2.6.

Theorem 3.4 Suppose vn
0 , v

n
1 , · · · , v

n
N and v̄n

0 , v̄
n
1 , · · · , v̄

n
N in CLip([0, T ] × Ōn) are, respec-

tively, viscosity subsolutions and viscosity supersolutions to the variational inequalities (3.35)
and (3.36) with the boundary condition (3.37), then the comparison result

sup
Q̄n

(vn
k − v̄n

k ) = sup
∂∗Qn

(vn
k − v̄n

k ) = 0 (3.39)

holds for all k = 0, 1, · · · , N , hence the viscosity solutions vn
0 , v

n
1 , · · · , v

n
N to (3.35)-(3.37) are

unique.

Proof. Starting from k = 0, inductively apply Theorem 2.4 to vn
k and v̄n

k , for k = 0, 1, · · · , N .

Proposition 3.1 (iterative procedure for optimization) For every k = 1, 2, · · · , N , itera-
tively define an F -stopping time

τ ∗k := inf
{

τ ∗k−1 < t ≤ T |vN−k+1 (t, X(t), L(t), R(t)) ≤ M vN−k (t, X(t), L(t), R(t))
}

,
(3.40)

with the convention that τ ∗0 = 0. For every ǫ ≥ 0, let zk(t, x, l, r; ǫ) be any of the real numbers
such that

0 ≤ sup
z

{vN+1−k(t, x+ γ(x, z), l, r) + β(t, x, l, r, z)} − vN−k(t, x, l, r; ǫ) ≤
ǫ

N
, (3.41)

and define an Fτ∗
k
−-measurable random variable

ζ∗k(ǫ) := zk (τ ∗k , X(τ ∗k−), L(τ ∗k ), R(τ ∗k ); ǫ) . (3.42)

The set of impulse controls {τ ∗k , ζ
∗
k(ǫ)}

N
k=1 in I is ǫ-optimal, in the sense that

E0

[

∫ T

0

α (s,X(s), L(s), R(s))ds+
N
∑

k=1

β(τ ∗k , X(τ ∗k−), L(τ ∗k−), R(τ ∗k−), ζ∗k(ǫ))

]

≥ sup
(τ,ζ)∈I

E0

[

∫ T

0

α (s,X(s), L(s), R(s))ds+

N
∑

i=1

β(τi, X(τi−), L(τi−), R(τi−), ζi)

]

− ǫ.

(3.43)

If the real numbers {z1(t, x, l, r; 0), z2(t, x, l, r; 0), · · · , zN(t, x, l, r; 0)} exist, meaning that the
supremum in (3.41) can be achieved, then the set of impulse controls {τ ∗k , ζ

∗
k(0)}N

k=1 in I

achieve the supremum in (3.24).
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3.4 Examples

Example 3.1 (Geometric Brownian motion with drift uncertainty, continued)
Consider the very geometric Brownian motion model in Example 2.4. Choose stopping times
0 ≤ τ ∗1 ≤ τ ∗2 ≤ T in T , stopping times of the filtration F generated by the geometric
Brownian motion X(·), to achieve the supremum in

sup
τ1 and τ2∈T , τ1≤τ2

E [X(τ2) −X(τ1)] . (3.44)

Suppose X(·) is the price process of a certain stock, then, with zero interest rate and in the
absence of transaction cost, the value (3.44) is the best possible profit from first buying and
then selling one share of this stock, observing the price evolution only.

Solution. Comparing the SDEs (2.11) with (3.3), and the goals (3.4) with (3.44), we are
trying to solve the impulse control problem with γ = 0, h(·) = 0, ξ(·) = 0, c(x, z) = zx for
x ∈ R

n and z ∈ R, ζ1 = −1 and ζ2 = 1.
When the interventions have no effect on the state process X(·), the change of measure from
P to P0 reduces to the optimal stopping case in section 2. Here in this example, the change
of measure is exactly the same as that in (2.87) for Example 2.4. The functions α = 0 and
β takes the form

β(t, x, z, l, r) = zx

(

m
∑

j=1

pjljrj + e−λtl0

)

. (3.45)

By Theorem 3.1,

sup
τ1 and τ2∈T , τ1≤τ2

E [X(τ2) −X(τ1)]

= sup
τ1 and τ2∈T , τ1≤τ2

E0

[

X(τ2)

(

m
∑

j=1

pjL(τ2;µj)R(τ2;µj) + e−λtL(τ2;µ0)

)

−X(τ1)

(

m
∑

j=1

pjL(τ1;µj)R(τ1;µj) + e−λtL(τ1;µ0)

)]

.

(3.46)

There exist deterministic measurable functions v1 and v2 : [0, T ] × (0,∞) × (0,∞)m+1 ×
[0,∞)m, such that

v1(t, X(t), L(t), R(t)) = sup
τ2∈St

E [β(τ2, X(τ2), 1, L(τ2), R(τ2)) |Ft ] , (3.47)

and

v2(t, X(t), L(t), R(t)) = sup
τ1∈St

E [β(τ1, X(τ1),−1, L(τ1), R(τ1)) + v1(τ1, X(τ1), L(τ1), R(τ1)) |Ft ] .

(3.48)
The functions v1 and v2 are viscosity solutions to the variational inequalities

min

{

−

(

∂

∂t
v2 + A v2

)

(t, x, l, r), (v2 − v1) (t, x, l, r) + x

(

m
∑

j=1

pjljrj + e−λtl0

)}

= 0,

(3.49)
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and

min

{

−

(

∂

∂t
v1 + A v1

)

(t, x, l, r), v1(t, x, l, r) − x

(

m
∑

j=1

pjljrj + e−λtl0

)}

= 0, (3.50)

with terminal condition

v1(T, x, l, r) = x

(

m
∑

j=1

pjljrj + e−λT l0

)

, (3.51)

for 0 ≤ t ≤ T , (x, l, r) ∈ (0,∞) × (0,∞)m × [0,∞)m+1. The infinitesimal generator A is
defined as in (2.91). We may reduce the dimensionality as in Example 2.4. The variational
inequalities can be solved via the approximation scheme suggested in section 3.3. The optimal
stopping times

τ ∗1 = inf

{

0 ≤ t ≤ T

∣

∣

∣

∣

∣

(v2 − v1) (t, X(t), L(t), R(t))

+X(t)

(

m
∑

j=1

pjL(t;µj)R(t;µj) + e−λtL(t;µ0)

)

≤ 0

}

,

(3.52)

and

τ ∗2 = inf

{

τ ∗1 ≤ t ≤ T

∣

∣

∣

∣

∣

v1(t, X(t), L(t), R(t))

−X(t)

(

m
∑

j=1

pjL(t;µj)R(t;µj) + e−λtL(t;µ0)

)

≤ 0

} (3.53)

achieve the supremum in (3.44), and the optimal value of the round-way transaction can be
computed from

sup
τ1 and τ2∈T , τ1≤τ2

E [X(τ2) −X(τ1)] = v2(0, X(0), 1, 0). (3.54)

�
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4 Appendix

Proof of Lemma 2.1. Taking an arbitrary F -stopping time τ with values in [0, T ], by
Holder’s inequalities,

E0

[

Ln1(τ ;µj)R
n2(τ ;µj) sup

0≤t≤T
|X(t)|n3

]

≤
(

E0

[

L4n1(τ ;µj)
])1/4 (

E0

[

R4n2(τ ;µj)
])1/4

(

E0

[

sup
0≤t≤T

|X(t)|2n3

])1/2

.

(4.1)

By the definition of the likelihood ratio in (2.19), for any u ∈ Θ, and any n1 = 1, 2, · · · ,

L4n1(t; u) = exp

{

4n1

∫ t

0

b(s,X(s); u)

σ2(s,X(s))
dX(s) − 8n1

2

∫ t

0

b2(s,X(s); u)

σ2(s,X(s))
ds

}

· exp

{

(8n2
1 − 2n1)

∫ t

0

b2(s,X(s); u)

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T,

(4.2)

the multiplicand of which is a (P0,F )-supermartingale with initial value one, and the mul-
tiplicator bounded by exp {(2n2

1 − n1)TC
2}, so by optional sampling theorem,

E0

[

L4n1(τ ;µj)
]

≤ exp
{

(8n2
1 − 2n1)TC

2
}

. (4.3)

Similarly, for n2 = 1, 2, · · · ,

L4n2(t;µ0)

L4n2(t;µj)

= exp

{

4n2

∫ t

0

b(s,X(s);µ0) − b(s,X(s);µj)

σ2(s,X(s))
dX(s) − 8n2

2

∫ t

0

(b(s,X(s);µ0) − b(s,X(s);µj))
2

σ2(s,X(s))
ds

}

· exp

{
∫ t

0

(16n2
2 − 2n2)b

2(s,X(s);µ0) + (16n2
2 + 2n2)b

2(s,X(s);µj)

σ2(s,X(s))
ds

}

, 0 ≤ t ≤ T

(4.4)

is the product of a (P0,F )-supermartingale and a bounded multiplicator, so

E0

[

L4(t;µ0)

L4(t;µj)

]

≤ exp
{

32n2
2TC2

}

. (4.5)

Then,

E0

[

R4n2(τ ;µj)
]

≤ λ4n2T 4n2−1

∫ T

0

E0

[

L4(t;µ0)

L4(t;µj)

]

dt ≤ λ4n2T 4n2 exp
{

32n2
2TC2

}

. (4.6)

Since X(·) is a local P0-martingale, from Burkholder-Davis-Gundy inequality (e.g. page 166
of [8] Karatzas and Shreve (1988)), we have, for n3 = 1, 2, · · · ,

E0

[

sup
0≤t≤T

|X(t)|2n3

]

≤ Cn3
E [< X >n3

T ] , (4.7)
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for some constant 0 ≤ Cn3
<∞. But

E0 [< X >n3

T ] = E0

[(
∫ T

0

σ2(t, X(t))dt

)n3
]

≤ T n3−1
E0

[
∫ T

0

σ2n3(t, X(t))dt

]

=T n3−1

∫ T

0

E0

[

σ2n3(t, X(t))
]

dt ≤ T n3−1C2n3

σ

∫ T

0

E0

[

|X(t)|2n3
]

dt

≤T n3−1C2n3

σ

∫ T

0

E0

[

sup
0≤s≤t

|X(s)|2n3

]

dt,

(4.8)

where the second inequality comes from the linear growth property of σ, Assumption 2.1(3).
Inequalities (4.6) and (4.8) imply

E0

[

sup
0≤t≤T

|X(t)|2n3

]

≤ Cn3
T n3−1C2n3

σ

∫ T

0

E0

[

sup
0≤s≤t

|X(s)|2n3

]

dt. (4.9)

Then, by Gronwall inequality (e.g. page 287 of [8] Karatzas and Shreve (1988)),

E0

[

sup
0≤t≤T

|X(t)|2n3

]

<∞. (4.10)

The estimates (4.1), (4.3), (4.6) and (4.10) conclude the inequality (2.29).
To derive uniform integrability of the family (2.30) from (2.29), using Cauchy-Schwartz and
Chebyshev’s inequalities to get the estimates,

sup
τ∈T

E0





(

Ln1(τ ;µj)R
n2(τ ;µj) sup

0≤t≤T
|X(t)|n3

)1{
Ln1 (τ ;µj)Rn2 (τ ;µj) sup

0≤t≤T

|X(t)|n3>A

}





≤ sup
τ∈T

(

E0

[

L2n1(τ ;µj)R
2n2(τ ;µj) sup

0≤t≤T
|X(t)|2n3

])1/2

·

(

P0

(

L2n1(τ ;µj)R
2n2(τ ;µj) sup

0≤t≤T
|X(t)|2n3 > A

))1/2

≤
1

A1/2
sup
τ∈T

E0

[

L2n1(τ ;µj)R
2n2(τ ;µj) sup

0≤t≤T
|X(t)|2n3

]

,

(4.11)

which, by (2.29), goes to 0 as A→ ∞. �

Definition 4.1 (Viscosity Solutions)
Let C 2 ([0, T ] × R × (0,∞)m+1 × [0,∞)m) be the set of real-valued twice differentiable func-
tions on [0, T ] × R × (0,∞)m+1 × [0,∞)m.

(1) A function v0 : [0, T ] × R × (0,∞)m+1 × [0,∞)m → R is said to be
(1.1) a viscosity supersolution to the variational inequality (2.50), if for any (t, x, l, r) ∈

[0, T ]×R×(0,∞)m+1×[0,∞)m, and any function ψ ∈ C 2 ([0, T ] × R × (0,∞)m+1 × [0,∞)m),
such that

0 = (v0 − ψ)(t, x, l, r) = sup
[0,T ]×R×(0,∞)m+1×[0,∞)m

(v0 − ψ)(t, x, l, r), (4.12)
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there is

min

{

−
∂

∂t
ψ(t, x, l, r) − A ψ(t, x, l, r) − α(t, x, l, r), v0(t, x, l, r) + α(t, x, l, r)

}

≥ 0, (4.13)

with terminal condition (2.51);
(1.2) a viscosity subsolution to the variational inequality (2.50), if for any

(t, x, l, r) ∈ [0, T ]×R×(0,∞)m+1×[0,∞)m, and any function ψ ∈ C 2 ([0, T ] × R × (0,∞)m+1 × [0,∞)m),
such that

0 = (v0 − ψ)(t, x, l, r) = inf
[0,T ]×Rn×Rm+1×Rm

(v0 − ψ)(t, x, l, r), (4.14)

there is

min

{

−
∂

∂t
ψ(t, x, l, r) − A ψ(t, x, l, r) − α(t, x, l, r), v0(t, x, l, r) + α(t, x, l, r)

}

≤ 0, (4.15)

with terminal condition (2.51);
(1.3) a viscosity solution if it is both a viscosity supersolution and a viscosity subsolution.

(2) The functions v0, v1, · · · , vN : [0, T ] × R × (0,∞)m+1 × [0,∞)m → R are said to be
(2.1) viscosity supersolutions to the variational inequalities (3.29) and (3.30), if for any

(t, x, l, r) ∈ [0, T ]×R×(0,∞)m+1×[0,∞)m, and any function ψk ∈ C 2 ([0, T ] × R × (0,∞)m+1 × [0,∞)m),
such that

0 = (vk − ψk)(t, x, l, r) = sup
[0,T ]×R×(0,∞)m+1×[0,∞)m

(vk − ψk)(t, x, l, r), (4.16)

for k = 0, 1, 2, · · · , N , there is

min

{

−

(

∂

∂t
ψk − A ψk − α

)

(t, x, l, r), (vk − M vk−1) (t, x, l, r)

}

≥ 0, (4.17)

for k = 1, 2, · · · , N , and
∂

∂t
ψ0 + A ψ0 + α(t, x, l, r) ≥ 0, (4.18)

with the boundary condition (3.31);
(2.2) viscosity subsolutions to the variational inequalities (3.29) and (3.30), if for any

(t, x, l, r) ∈ [0, T ]×R×(0,∞)m+1×[0,∞)m, and any function ψk ∈ C 2 ([0, T ] × R × (0,∞)m+1 × [0,∞)m),
such that

0 = (vk − ψk)(t, x, l, r) = inf
[0,T ]×R×(0,∞)m+1×[0,∞)m

(vk − ψk)(t, x, l, r), (4.19)

for k = 0, 1, 2, · · · , N , there is

min

{

−

(

∂

∂t
ψk − A ψk − α

)

(t, x, l, r), (vk − M vk−1) (t, x, l, r)

}

≤ 0, (4.20)
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for k = 1, 2, · · · , N , and
∂

∂t
ψ0 + A ψ0 + α(t, x, l, r) ≤ 0, (4.21)

with the boundary condition (3.31);
(2.3) viscosity solutions if they are both viscosity supersolutions and viscosity subsolutions.

Proof of Theorem 2.4. Defining the Hamiltonian function

H :[0, T ] × Ōn × R
2m+2 × S(2m+2) → R;

(t, y, p,M) 7→ H(t, y, p,M),
(4.22)

as
H(t, y, p,M) = −(µ(t, y) · p+ trace

(

σY σ
transpose
Y (t, y)M

)

+ α(t, y)), (4.23)

where S(2m+2) is the set of all (2m + 2) × (2m + 2) symmetric matrices. The variational
inequality (2.64) can be written as

min

{

−
∂

∂t
vn(t, y) +H

(

t, y,Dyvn(t, y), D2
yvn(t, y)

)

, vn(t, y) + α(t, y)

}

= 0, (t, y) ∈ Qn\∂
∗Qn,

(4.24)
with the boundary condition (2.65). The proof will proceed through four steps.

Step 1. Taking any (t, y1) and (t, y2) in Qn, and any matrices A and B in S(2m+2) satis-
fying, for some ǫ > 0

(

A 0
0 B

)

≤
3

ǫ

(

I −I
−I I

)

, (4.25)

where I is the (2m+2)×(2m+2)-identity matrix. Denoting Σ1 = σ(t, y1) and Σ2 = σ(t, y2),
then from inequality (4.25) and the Lipschitz continuity of σ(t, ·) over On, we deduce that

trace (Σ1Σ
′
1A− Σ2Σ

′
2B) = trace

((

Σ2Σ
′
2 Σ2Σ

′
1

Σ1Σ
′
2 Σ1Σ

′
1

)(

A 0
0 −B

))

≤
3

ǫ
trace

((

Σ1Σ
′
1 Σ2Σ

′
1

Σ1Σ
′
2 Σ2Σ

′
2

) (

I −I
−I I

))

=
3

ǫ
trace (Σ2Σ

′
2 − Σ2Σ

′
1 − Σ1Σ

′
2 + Σ1Σ

′
1)

=
3

ǫ
||Σ2 − Σ1||

2 ≤
3

ǫ
CN,σ||y

1 − y2||2.

(4.26)

With pǫ := 1
ǫ
(y1 − y2), from inequality (4.26) and the Lipschitz continuity of µ(t, ·) and

α(t, ·), there exists a constant Cn,H, not depending on ǫ, such that

H
(

t, y2, pǫ, B
)

−H
(

t, y1, pǫ, A
)

≤ Cn,H

(

1

ǫ
||y1 − y2||2 + ||y1 − y2||

)

. (4.27)

Step 2. For arbitrary fixed ǫ > 0, δ > 0 and η > 0, the function Φ defined as

Φ(t, y1, y2) = vn(t, y1) − v̄n(t, y2) −
1

2ǫ
||y1 − y2||2 − δ(T − t) −

η

t
, (4.28)
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for (t, y1, y2) ∈ [0, T ]× Ōn × Ōn, is continuous and has the right limit −∞ as t→ 0+. Hence
Φ attains its maximum at some point (tn, y

1
n, y

2
n) in (0, T ] × Ōn × Ōn. Seeing from

Φ(tn, y
1
n, y

1
n) + Φ(tn, y

2
n, y

2
n) ≤ 2Φ(tn, y

1
n, y

2
n), (4.29)

and from the Lipschitz continuity of vn and v̄n, there exists a constant Cn, not depending
on ǫ, such that

1

2ǫ
||y1

n − y2
n||

2 ≤ vn(tn, y
1
n) − vn(tn, y

2
n) + v̄n(tn, y

1
n) − v̄n(tn, y

2
n)

≤Cn||y
1
n − y2

n|| ≤ ǫC2
n +

1

4ǫ
||y1

n − y2
n||

2,
(4.30)

which implies that
||y1

n − y2
n||

2 ≤ 4ǫ2C2
n. (4.31)

Step 3. At least one of the three cases is true: (tn, y
1
n) ∈ ∂∗Qn, (tn, y

2
n) ∈ ∂∗Qn, or

(tn, y
1
n), (tn, y

2
n) ∈ Qn.

Step 3.1. If (tn, y
1
n) ∈ ∂∗Qn, then from

Φ(t, y, y) ≤ Φ(tn, y
1
n, y

2
n), (4.32)

by the Lipschitz continuity of v̄n, and by (4.31), there exists a constant C̄n, depending only
on v̄n and On, such that

vn(t, y) − v̄n(t, y)

≤vn(tn, y
1
n) − v̄n(tn, y

2
n) −

1

2ǫ
||y1

n − y2
n||

2 + δ(tn − t) +
η

t
−
η

tn

≤ sup
∂∗Qn

(vn − v̄n) + vn(tn, y
2
n) − v̄n(tn, y

2
n) + δ(T − t) +

η

t

≤ sup
∂∗Qn

(vn − v̄n) + C̄n||y
1
n − y2

n|| + δ(T − t) +
η

t

≤ sup
∂∗Qn

(vn − v̄n) + 2ǫCnC̄n + δ(T − t) +
η

t
,

(4.33)

for all (t, y) in Q̄n. In inequalities (4.33), first sending ǫ, ρ and β to zero, then taking
supremum of vn(t, y) − v̄n(t, y) over Q̄n, we obtain the inequality

sup
Q̄n

(vn − v̄n) ≤ sup
∂∗Qn

(vn − v̄n). (4.34)

Step 3.2. If (tn, y
2
n) ∈ ∂∗Qn, then inequality (4.34) can be proved by the same type of

arguments as in Step 3.1.

Step 3.3. If (tn, y
1
n), (tn, y

2
n) ∈ Qn, then the conditions for the Crandall-Ishii maximum

principle (c.f. Theorem V.6.1, Fleming and Soner (1993) [6]) are satisfied. Denoting

φ(t, y1, y2) =
1

2ǫ
||y1 − y2||2 − δ(t− T ) +

η

t
, (t, y1, y2) ∈ [0, T ] × Ōn × Ōn. (4.35)
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There exist q and q̂ in R and matrices A and B in S(2m+2), satisfying

(1) q − q̂ = Dtφ(tn, y
1
n, y

2
n) = −δ − η

t2n
;

(2)
(

A 0
0 −B

)

≤
(

Σ12 + ǫΣ2
12

)

=
3

ǫ

(

I −I
−I I

)

; (4.36)

(3) (q, p, A) ∈ P̄2,+vn(tn, y
1
n), p = Dy1φ(tn, y

1
n, y

2
n) = pǫ;

(4) (q̂, p̂, B) ∈ P̄2,−v̄n(tn, y
2
n), p̂ = −Dy2φ(tn, y

1
n, y

2
n) = pǫ,

where

Σ12 = D2
y1,y2φ(tn, y

1
n, y

2
n) =

1

ǫ

(

I −I
−I I

)

, (4.37)

the set P̄2,+vn(tn, y
1
n) is the closure of the parabolic superjet of vn at the point (tn, y

1
n), and

the set P̄2,−v̄n(tn, y
2
n) is the closure of the parabolic subjet of v̄n at the point (tn, y

2
n).

Step 4. In the case of Step 3.3, from the equivalent definition of viscosity subsolutions
and supersolutions using semijets (Definition 2.2 of Crandall, Ishii and Lions (1992) [5] and
Theorem V.4.1 of Fleming and Soner (1993) [6])), the triples (q, p, A) and (q̂, p̂, B) satisfy

min
{

−q +H
(

tn, y
1
n, pǫ, A

)

, vn(tn, y
1
n) + α(tn, y

1
n)
}

≤ 0, (4.38)

and
min

{

−q̂ +H
(

tn, y
2
n, pǫ, B

)

, v̄n(tn, y
2
n) + α(tn, y

2
n)
}

≥ 0. (4.39)

Subtracting (4.39) from (4.38) implies that either

vn(tn, y
1
n) − v̄n(tn, y

2
n) ≤ −α(tn, y

1
n) + α(tn, y

2
n) (4.40)

or
−q + q̂ ≤ H

(

tn, y
2
n, pǫ, B

)

−H
(

tn, y
1
n, pǫ, A

)

(4.41)

is true.

Step 4.1. If inequality (4.40) holds, then by (4.32), (4.31) and the Lipschitz continuity
of α(t, ·) on the bounded set Ōn, there exists a constant Cn,α, not depending on ǫ, such that

vn(t, y) − v̄n(t, y)

≤vn(tn, y
1
n) − v̄n(tn, y

2
n) + δ(T − t) +

η

t

≤2ǫCnCn,α + δ(T − t) +
η

t
,

(4.42)

for all (t, y) in Q̄n. Hence first letting ǫ, δ and η go to zero, then taking the supremum over
Q̄n, there is

sup
Q̄n

(vn − v̄n) ≤ 0. (4.43)
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Step 4.2. If inequality (4.41) holds, then by (4.27), (4.36)-(1), and (4.31), there is

0 < δ ≤ −q + q̂ ≤ H
(

t, y2, pǫ, B
)

−H
(

t, y1, pǫ, A
)

≤Cn,H

(

1

ǫ
||y1 − y2||2 + ||y1 − y2||

)

≤ 2ǫCn,HCn(2Cn + 1).
(4.44)

Letting ǫ → 0+ in (4.44) produces the contradiction that 0 ≤ δ ≤ 0 which simply means
that the situation (tn, y

1
n), (tn, y

2
n) ∈ Qn and the inequality (4.41) are mutually exclusive.

In all cases other than that in Step 4.2, the comparison result (2.70) has been proven. �
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